Fork me on GitHub

AIQ | 优秀的算法工程师都是不用深度学习的

前几天面试了一个C9应届硕士生,模式识别专业,连续问好几个专业问题都没能答上来。

尴尬之余,我问他:「你没有什么理想吗?你现在最渴望的事情是什么?」

他转悠着大眼睛,不假思索道:「将kaiming大大的Resnet扩展到10万层,把kitti,COCO数据库检测识别任务提升20个点以上」

真没想到在面试中居然还有这种操作。

我问为什么这能成为现阶段最渴望的事情,他反问「你难道不为LeCun、Bengio和Hinton的执着精神所感动么?你难道不羡慕ILSVRC2012 AlexNet大放异彩么?你难道不被googlenet,Resnet的深邃思想所折服么?」

好有道理我竟无法反驳。

这么了解市场的工程师,一定是个不可多得的人才!

于是,我决定:不录取他。

这几年,深度学习在CV领域大行其道,不论是detection,segmentation,classification,还是stereo matching,pose estimation,深度学习把之前传统各种state of the art方法爆出翔。现今,算法工程师不知道经典网络,流行框架都不好意思和别人打招呼。

此现象仅仅局限于刚入坑的小白。但是对于浸淫5年以上的无论bat算法经理还是资深人肉特征设计工程师,这种事情对于他们不过是一种笑谈。久而久之,我发现一个残酷的共同点——

他们只用传统方法。

工资不高吗?最低的月薪都有20K+,还有公司期权和股票。

技术不行吗?Paper 发到手软,代码编译一次就好。

我问过其中一个:我看你整天针对不同任务,手动设计特征,分类器不累么,不想试试cnn方法么?

他说:废话,肯定想啊。

我问:那为什么不试一下LeNet,AlexNet呢,caffe框架下不是都有例子么?

他叹气:不,太忙。

他意味深长道:优秀的算法工程师都是不用深度学习方法的。

跟我聊天的这个人,本身就是个大神,BS CMU,MS Stanford,doctor在MIT,三年完成五年课程,读博期间发了100多篇sci,h index 40好几,回国任创业公司首席科学家,闲着没事发 Paper 玩,引用也很可观。

追随兴趣投入cv研究10几年,早在01年Paul Viola提出Haar与级联adaboost时,小修了特征与分类器,识别率提升了0.1%,达到当年人脸检测领域的state of the art。后来受不了国外大学对华裔学术上的歧视,毅然回国,目前早已实现财务自由。

这样的算法佬,我想出来,从来不买好的显卡跑深度学习,买来显卡应该也是吃鸡用的吧。

我还是认识另一个算法工程师。

最喜欢传统特征与分类器,像gabor滤波器,LBP特征,adaboost算法,SVM分类,random forest等自然是如数家珍,每每惊叹于harr特征在人脸检测,hog在人体检测,LBP在人脸识别取得的成功而热泪盈眶。但也由于过于痴迷,每天神神道道: 秀,天秀,陈独秀,蒂花之秀。对于深度学习方法不屑一顾,可以搭出比cnn更work传统特征+分类器方法。

这个人才是是圈子里的一股清流。

他最大的爱好是在视频监控rgb通过高斯背景建模生成的前景图像上,用米尺丈量显示器来确定物体的宽高比,剔除树叶抖动,水波荡漾,磕头机等带来的误报。此等神级操作在刚入坑的小白看来,是那样的格格不入。有时也有人劝他,目前cnn通过剪枝,压缩模型等技术,在1080ti上已经达到实时,你也可以试一下,减少一下工作量。

他却不会受到任何影响。

我问他:你到底怎么保持一颗平常心的,别人都用深度学习取得较好的泛化效果,你却针对一个个场景手工设计特征和分类器,不累么?

他笑,说:累又怎么了,不服让深度学习跑在低端arm平台上试试?

我立刻懂了。

同样是这个人,利用传统方法,在特定场景实现比深度学习更好的效果,而且通过5轮算法优化,硬是把算法移植到低端平台,每路为公司剩下2K的成本,这是一种工匠精神。

上周跟一个 CEO 朋友出去吃饭,他说他招来的一些菜鸡算法工程师,总想买多个1080ti显卡,用深度学习方法提升研发效率。

他跟我说,「可你不一样,你会一直提醒我,要我远离舒适区,要我不能安于现状,要我有危机意识,你好像特别看重用传统方法解决问题。」

人都是需要独立的。

仍是要永远年轻,永远热泪盈眶。

要记住啊,知世故而不世故,处江湖而远江湖,才是最善良的成熟。


本文地址:https://www.6aiq.com/article/1530170993020
本文版权归作者和AIQ共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出