"刚开始接触深度学习,请问matlab里的deeplearntoolbox用来做什么的? 深度学习与神经网络有什么区别"
刚开始接触深度学习,请问matlab里的deeplearntoolbox用来做什么的?深度学习与神经网络有什么区别
1)深度学习工具箱,它提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。可以使用卷积神经网络(ConvNet、CNN)和长短期记忆 (LSTM) 网络对图像、时序和文本数据执行分类和回归。应用程序和绘图能帮助可视化激活值、编辑网络架构和监控训练进度。
2)这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
学习可关注:人工智能技术与咨询,更多详情可咨询175-3102-1189,或到我司官网了解:https://www.chinaai.org.cn/联系人:申老师;手机:17531021189(v同号)。
1)深度学习工具箱,它提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。可以使用卷积神经网络(ConvNet、CNN)和长短期记忆 (LSTM) 网络对图像、时序和文本数据执行分类和回归。应用程序和绘图能帮助可视化激活值、编辑网络架构和监控训练进度。
2)这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。
此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
学习可关注:人工智能技术与咨询,更多详情可咨询175-3102-1189,或到我司官网了解:https://www.chinaai.org.cn/
联系人:申老师;手机:17531021189(v同号)。